Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jing Wang and Ming-Liang Tong*

School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China

Correspondence e-mail: cestml@zsu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.033$
$w R$ factor $=0.095$
Data-to-parameter ratio $=14.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Di- μ-methoxo-bis[dipyridinecopper(II)] diperchlorate

The title compound, $\left[\mathrm{Cu}_{2}\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, consists of a centrosymmetric dinuclear unit with bridging methoxo groups, and each $\mathrm{Cu}^{\mathrm{II}}$ atom forms a square-planar $\mathrm{CuN}_{2} \mathrm{O}_{2}$ unit with pyridine ligands. The $\mathrm{Cu} \cdots \mathrm{Cu}$ distance is 2.9336 (11) \AA and the $\mathrm{Cu}-\mathrm{O}-\mathrm{Cu}$ bond angle is 99.51 (7) ${ }^{\circ}$. The perchlorate anions are at semi-coordination distances, the $\mathrm{Cu}-\mathrm{O}$ (perchlorate) distances being in the range 2.649 (2)2.741 (2) Å.

Comment

There has been much interest in recent years in planar $\mathrm{Cu}-$ (μ-OR) -Cu dinuclear systems because of the magnetostructural correlation between the $\mathrm{Cu}-\mathrm{O}-\mathrm{Cu}$ bond angle and the magnetic exchange parameter (Graham et al., 2001; Hatfield, 1984; Ruiz et al., 1997). The title complex, (I), was obtained in an attempt to prepare a polymeric copper complex of 5,5'-thiodisalicylate.

(I)

The title compound, (I), is a centrosymmetric dinuclear $\mathrm{Cu}^{\mathrm{II}}$ complex (Fig. 1). Each Cu atom shows square-planar coordination, with the basal plane formed by the two pyridine N atoms and two methoxo O atoms. The $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{N}$ distances are 1.9170 (18)-1.9263 (18) \AA and 1.992 (2)2.002 (2) Å, respectively; these values are comparable to those in similar compounds. However, the $\mathrm{Cu} \cdots \mathrm{Cu}$ distance and $\mathrm{Cu}-\mathrm{O}-\mathrm{Cu}$ bond angle significantly exceed the range for similar compounds reported in the literature. The $\mathrm{Cu} 1 \cdots \mathrm{Cu} 1^{\mathrm{i}}$ distance [symmetry code: (i) $-2-x, 1-y,-2-z$] of 2.9336 (11) \AA and the $\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{Cu} 1^{\mathrm{i}}$ bond angle of 99.51 (7) ${ }^{\circ}$ are shorter and smaller than those in comparable dinuclear square-planar copper(II) compounds [2.974 (1)3.034 (1) Å and 101.72 (7)-103.97 (9) ${ }^{\circ}$; Bu et al., 2004; Komaei et al., 1999; Wang et al., 2001].
The perchlorate anion in (I) is bridging, at semi-coordination distances [2.649 (2) and 2.741 (2) \AA] that are similar to

Received 26 July 2004
Accepted 3 August 2004
Online 7 August 2004

Figure 1
Molecular structure of (I), showing 50% probability displacement ellipsoids. Atoms labelled with the suffix a are at the symmetry position $(-2-x, 1-y,-2-z)$.
those in $\operatorname{bis}(\mu$-methoxo)tetrakis(2-amino-5-picolinyl)dicopper(II) diperchlorate (Komaei et al., 1999).

Experimental

Copper(II) nitrate ($0.242 \mathrm{~g}, 1.0 \mathrm{mmol}$) and $5,5^{\prime}$-thiodisalicylic acid $(0.153 \mathrm{~g}, 0.5 \mathrm{mmol})$ were placed in a $10: 1(v / v)$ methanol/pyridine mixture and the solution was heated until the reagents dissolved. A solution $(2 \mathrm{ml})$ of $\mathrm{NaClO}_{4}(0.142 \mathrm{~g}, 1.0 \mathrm{mmol})$ was then added. Purple block-shaped crystals of (I) separated from the solution in about 20% yield after 3 d .

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	$D_{x}=1.688 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=704.45$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / n$	Cell parameters from 4713
$a=8.528(4) \AA$	reflections
$b=16.850(9) \AA$	$\theta=3.2-27.5^{\circ}$
$c=10.185(6) \AA$	$\mu=1.79 \mathrm{~mm}^{-1}$
$\beta=108.697(8)^{\circ}$	$T=293(2) \mathrm{K}$
$V=1386.3(13) \AA^{3}$	Block, purple
$Z=2$	$0.38 \times 0.32 \times 0.24 \mathrm{~mm}$
Data collection	
Rigaku Mercury CCD	2666 independent reflections
\quad diffractometer	2230 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.032$
Absorption correction: multi-scan	$\theta_{\text {max }}=26.0^{\circ}$
\quad (CrystalClear; Rigaku, 2002)	$h=-9 \rightarrow 10$
$T_{\text {min }}=0.512, T_{\text {max }}=0.651$	$k=-20 \rightarrow 20$
8628 measured reflections	$l=-12 \rightarrow 10$

Refinement

Refinement on F^{2}	H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0576 P)^{2}\right]$
$w R\left(F^{2}\right)=0.096$	where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$S=1.09$	$(\Delta / \sigma)_{\max }=0.001$
2666 reflections	$\Delta \rho_{\max }=0.49 \mathrm{e}^{-3}$
181 parameters	$\Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.9170(18)$	$\mathrm{Cu} 1-\mathrm{O} 2$	$2.649(2)$
$\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$	$1.9263(18)$	$\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$2.741(2)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$1.992(2)$	$\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$2.9336(11)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$2.002(2)$		
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$	$80.49(7)$	$\mathrm{O}^{1}{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 2$	$174.91(7)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$173.69(7)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$91.08(9)$
$\mathrm{O}^{1}-\mathrm{Cu} 1-\mathrm{N} 1$	$93.60(8)$	$\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$99.51(7)$
Symmetry code: $(\mathrm{i})-2-x, 1-y,-2-z$			

Symmetry code: (i) $-2-x, 1-y,-2-z$.
All H atoms were included in calculated positions and constrained to ride at a distance of $0.93 \AA$ from their parent C atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, for the pyridyl groups and $0.96 \AA$ from their parent C atoms, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$, for the methyl group.

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the Foundation for the Author of National Excellent Doctoral Dissertation of China and the Excellent Young Teachers Program of the Ministry of Education, People's Republic of China, for supporting this work.

References

Bu, X.-H., Tong, M.-L., Chang, H.-C., Kitagawa, S. \& Batten, S. R. (2004). Angew. Chem. Int. Ed. 43, 192-195.
Graham, B., Hearn, M. T. W., Junk, P. C., Kepert, C. M., Mabbs, F. E., Moubaraki, B., Murray, K. S. \& Spiccia, L. (2001). Inorg. Chem. 40, 15361543.

Hatfield, W. E. (1984). Magneto-Structural Correlations in Exchange Coupled Systems, edited by R. D. Willett, D. Gatteschi \& O. Kahn, NATO ASI Series, p. 555. Dordrecht: D. Reidel.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5139. Oak Ridge National Laboratory, Tennessee, USA.
Komaei, S. A., van Albada, G. A., Mutikainen, I., Turpeinen, U. \& Reedijk, J. (1999). Polyhedron, 18, 1991-1997.

Rigaku (2002). CrystalClear. Version 1.35. Rigaku Corporation, Tokyo, Japan.
Ruiz, E., Alemany, P., Alvarez, S. \& Cano, J. (1997). J. Am. Chem. Soc. 119, 1297-1303.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Wang, R.-H., Su, W.-P., Cao, R., Zhao, Y.-J. \& Hong, M.-C. (2001). Chin. J. Struct. Chem. 20, 37-39.

